بررسی اثرات ضد دیابتی تجویز جداگانه و همزمان کوآنزیم کیوتن و ال - آرژینین در رت های دیابتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه زابل

2 ظشذخم

3 دانشگاه زایل

چکیده

کوآنزیم کیوتن به عنوان کوفاکتور ضروری انرژی سلولی و ال آرژینین به عنوان سوبسترا نیتریک اکساید سنتتاز دارای اثرات –
متابولیکی می باشند . این مطالعه برای ارزیابی اثر تجویز کوآنزیم کیوتن و ال آرژینین بصورت جداگانه و همزمان بر -
بیومارکرهای دیابت در رت های دیابتی صورت گرفته بود. 48 سر موش صحرایی با وزن 250 - 180 به صورت تصادفی به شش
گروه تقسیم شدند . گروه اول شاهد سالم ، گروه دوم شاهد دیابتی ) دیابتی بدون درمان ( ، گروه سوم دیابتی تحت تیمار با ال -
آرژینین ) mg/kg50 ( ، گروه چهارم دیابتی تحت درمان با کوآنزیم کیوتن ( mg/kg 10 ( ، گروه پنجم دیابتی تحت درمان
توأم با ال آرژینین ) - mg/kg 50 ( و کوآنزیم کیوتن ) mg/kg 10 ( ، گروه ششم دیابتی تحت درمان با متفورمین ) mg/kg
250 ( بود. دیابت نوع یک با داروی آلوکسان ) mg/kg, IP 120 ( القا گردید. در پایان 30 روز پارامترهای گلوکز ، انسولین ، آنزیم
های کبدی ، اوره ، کراتینین سرم و هموگلوبین گلیکوزیله مورد سنجش قرار گرفته بودند. داده ها با آزمون 5 / 3 Sigma stat با
سطح معناداری ) 05 / 0P< ( مورد بررسی قرار گرفتند. در گروه تحت تیمار با کوآنزیم کیوتن هموگلوبین A1C ، گلوکز سرم ،
آنزیم های کبدی ، انسولین و BUN و کراتینین کاهش یافته بود ) 05 / 0P< (. ال آرژینین نیز اثر مشابهی بر شاخص های –
بیوشیمیایی سرم داشت. کوآنزیم کیوتن و ال آرژینین اثر هم افزایی نداشتند و استفاده توأم آن در بیماران دیابتی حائز اهمیت –
نمی باشد. با توجه به نتایج مطالعه حاضر تجویز کوآنزیم کیوتن همراه با داروی متفورمین می تواند اثرات مفیدی به همراه داشته
باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the antidiabetic effects of concurrent versus separate administration of coenzyme Q10 and L-Arginine in diabetic rats

نویسندگان [English]

  • Sanza Vaziri 1
  • mehdi jahantigh 2
  • MohammadReza hajinezhad 3
  • Mohammad Ebrahim Akbari 1
1 UNI Zabol
2 ظشذخم
3 Uni Zabol
چکیده [English]

Coenzyme Q10 (CoQ10) is an essential cofactor for cellular energy production, while L-arginine is a substrate of nitric oxide synthesis that have metabolic effects. This study aimed to evaluate the separate versus combined effects of CoQ10 and L-arginine on diabetic biomarkers in rats. Forty-eight male rats weighing 180-250 gr were randomly divided into six groups: The first healthy control group, the second diabetic control group (untreated diabetes), the third diabetic treated group with L-arginine (50 mg/kg), the fourth diabetic treated group with CoQ10 (10 mg/kg), the fifth diabetic treated group with L-Arginine (50 mg/kg) and CoQ10 (10 mg/kg), the sixth diabetic treated group with Metformin (250 mg/kg). Type 1 diabetes was induced with Alloxan (120 mg/kg, IP). After 30 days, glucose, insulin, liver enzymes, urea, serum creatinine and glycosylated hemoglobin (HbA1c) were measured. Data were analyzed using the sigma stat 3.5 test with a significance level of P<0.05. In the CoQ10-treated group, HbA1C, serum glucose, liver enzymes, insulin, BUN, and creatinine were significantly decreased (P<0.05). L-arginine also demonstrated similar effects on serum biochemical parameters. However, no synergistic effect was observed between CoQ10 and L-arginine, suggesting that their combined use in diabetic patients may not be beneficial. According to the findings of the present study, CoQ10 Administration in conjunction with metformin may offer advantageous therapeutic outcomes.

کلیدواژه‌ها [English]

  • diabetes
  • coenzyme q10
  • L-arginine
  • rats
Ahmadvand, H., Tavafi, M., Khosrowbeygi, A., 2012. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. Journal of Diabetes and its Complications 26, 476-482.
Amin, M.M., Asaad, G.F., Abdel Salam, R.M., El-Abhar, H.S., Arbid, M.S., 2014. Novel CoQ10 antidiabetic mechanisms underlie its positive effect: modulation of insulin and adiponectine receptors, Tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats. PloS one 9, e89169.
Chew, G.T., Watts, G.F., Davis, T.M., Stuckey, B.G., Beilin, L.J., Thompson, P.L., Burke, V., Currie, P.J., 2008. Hemodynamic effects of fenofibrate and coenzyme Q10 in type 2 diabetic subjects with left ventricular diastolic dysfunction. Diabetes care 31, 1502-1509.
DeFronzo, R.A., Barzilai, N., Simonson, D.C., 1991. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. The Journal of Clinical Endocrinology & Metabolism 73, 1294-1301.
Elmalí, E., Altan, N., Bukan, N., 2004. Effect of the sulphonylurea glibenclamide on liver and kidney antioxidant enzymes in streptozocin-induced diabetic rats. Drugs R D 5, 203-208.
Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R., Morris, A.D., 2005. Metformin and reduced risk of cancer in diabetic patients. Bmj 330, 1304-1305.
Fiordaliso, F., Bianchi, R., Staszewsky, L., Cuccovillo, I., Doni, M., Laragione, T., Salio, M., Savino, C., Melucci, S., Santangelo, F., Scanziani, E., Masson, S., Ghezzi, P., Latini, R., 2004. Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol 37, 959-968.
Fu, W.J., Haynes, T.E., Kohli, R., Hu, J., Shi, W., Spencer, T.E., Carroll, R.J., Meininger, C.J., Wu, G., 2005. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. The Journal of nutrition 135, 714-721.
Gannon, M.C., Nuttall, J.A., Nuttall, F.Q., 2002. Oral arginine does not stimulate an increase in insulin concentration but delays glucose disposal. The American journal of clinical nutrition 76, 1016-1022.
Greenberg, S., Frishman, W.H., 1990. Co‐enzyme Q10: a new drug for cardiovascular disease. The journal of clinical pharmacology 30, 596-608.
Hussein, J., El-matty, D.A., El-Khayat, Z., Abdel-Latif, Y., 2013. Therapeutic role of coenzyme Q10 in brain injury during experimental diabetes. Journal of Applied Pharmaceutical Science 3, 213-217.
Jabłecka, A., Bogdański, P., Balcer, N., Cieślewicz, A., Skołuda, A., Musialik, K., 2012. The effect of oral L-arginine supplementation on fasting glucose, HbA1c, nitric oxide and total antioxidant status in diabetic patients with atherosclerotic peripheral arterial disease of lower extremities. European Review for Medical & Pharmacological Sciences 16.
Klip, A., Leiter, L.A., 1990. Cellular mechanism of action of metformin. Diabetes care 13, 696-704.
Latha, M., Pari, L., 2003. Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clinical and experimental pharmacology and physiology 30, 38-43.
Lenaz, G., Fato, R., Formiggini, G., Genova, M.L., 2007. The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 7, S8-S33.
Maheshwari, R.A., Balaraman, R., Sen, A.K., Seth, A., 2014. Effect of coenzyme Q10 alone and its combination with metformin on streptozotocin-nicotinamide-induced diabetic nephropathy in rats. Indian journal of pharmacology 46, 627-632.
Maritim, A.C., Sanders, R.A., Watkins, J.B., 3rd, 2003. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17, 24-38.
Matthews, R.T., Yang, L., Browne, S., Baik, M., Beal, M.F., 1998. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proceedings of the National Academy of Sciences 95, 8892-8897.
McKnight, J.R., Satterfield, M.C., Jobgen, W.S., Smith, S.B., Spencer, T.E., Meininger, C.J., McNeal, C.J., Wu, G., 2010. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino acids 39, 349-357.
Mohan, I.K., Das, U., 1998. Effect of l-arginine–nitric oxide system on chemical-induced diabetes mellitus. Free radical biology and medicine 25, 75.765-7
Mori, T.A., Burke, V., Puddey, I.B., Irish, A.B., Cowpland, C.A., Beilin, L.J., Dogra, G.K., Watts, G.F., 2009. The effects of ω3 fatty acids and coenzyme Q10 on blood pressure and heart rate in chronic kidney disease: a randomized controlled trial. Journal of hypertension 27, 1863-1872.
Mullen, M.J., Wright, D., Donald, A.E., Thorne, S., Thomson, H., Deanfield, J.E., 2000. Atorvastatin but not L-arginine improves endothelial function in type I diabetes mellitus: a double-blind study. Journal of the American College of Cardiology 36, 410-416.
Naziroğlu, M., Butterworth, P.J., 2005. Protective effects of moderate exercise with dietary vitamin C and E on blood antioxidative defense mechanism in rats with streptozotocin-induced diabetes. Canadian journal of applied physiology 30, 172-185.
Ouslimani, N., Peynet, J., Bonnefont-Rousselot, D., Thérond, P., Legrand, A., Beaudeux, J.-L., 2005. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 54, 834-829.
Powers, A.C., Niswender, K.D., Evans-Molina, C., 2018. Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology, In: Harrison's Principles of Internal Medicine, 20e. McGraw-Hill Education, New York, NY.
Rahimi, R., Nikfar, S., Larijani, B., Abdollahi, M., 2005. A review on the role of antioxidants in the management of diabetes and its complications. Biomedicine & Pharmacotherapy 59, 365-373.
Rauscher, F.M., Sanders, R.A., Watkins, J.B., 3rd, 2001. Effects of isoeugenol on oxidative stress pathways in normal and streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 15, 159-164.
Rota, R., Chiavaroli, C., Garay, R.P., Hannaert, P., 2004. Reduction of retinal albumin leakage by the antioxidant calcium dobesilate in streptozotocin-diabetic rats. Eur J Pharmacol 495, 217-224.
Rozen, T., Oshinsky, M., Gebeline, C., Bradley, K., Young, W., Shechter, A., Silberstein, S., 2002. Open label trial of coenzyme Q10 as a migraine preventive. Cephalalgia 22, 137-141.
Saudek, C.D., Brick, J.C., 2009. The clinical use of hemoglobin A1c. Journal of diabetes science and technology 3, 629-634.
Schmelzer, C., Lindner, I., Rimbach, G., Niklowitz, P., Menke, T., Döring, F., 2008. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 32, 183-179.
Singh, R.B., Niaz, M.A., 1999. Serum concentration of lipoprotein (a) decreases on treatment with hydrosoluble coenzyme Q10 in patients with coronary artery disease: discovery of a new role. International journal of cardiology 68, 23-29.
Sourris, K.C., Harcourt, B.E., Tang, P.H., Morley, A.L., Huynh, K., Penfold, S.A., Coughlan, M.T., Cooper, M.E., Nguyen, T.-V., Ritchie, R.H., 2012. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radical Biology and Medicine 52, 716-723.
van Beek, J.H., de Moor, M.H., de Geus, E.J., Lubke, G.H., Vink, J.M., Willemsen, G., Boomsma, D.I., 2013. The genetic architecture of liver enzyme levels: GGT, ALT and AST. Behavior genetics 43, 329-339.
Wascher, T., Graier, W., Dittrich, P., Hussain, M., Bahadori, B., Wallner, S., Toplak, H., 1997. Effects of low‐dose l‐arginine on insulin‐mediated vasodilatation and insulin sensitivity. European journal of clinical investigation 27, 690-695.
Wilcox, G., 2005. Insulin and insulin resistance. Clinical biochemist reviews 26, 19.
Wu, G., Morris Jr, S.M., 1998. Arginine metabolism: nitric oxide and beyond. Biochemical Journal 336, 1-17.