اثر استفاده از ضایعات سیب‌زمینی پخته، ملاس و تلقیح باکتریایی بر ترکیب شیمیایی، کیفیت تخمیر و تولید گاز در شرایط برون تنی در سیلاژ ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده دامپزشکی، دانشگاه سمنان

چکیده

هدف از این مطالعه ارزیابی و مقایسه اثرات افزودن سیب­زمینی پخته و یا ملاس همراه با و یا بدون تلقیح باکتریایی بر ترکیب شیمیایی، کیفیت تخمیر و تولید گاز در شرایط برون تنی در سیلاژ ذرت بود. بدین منظور آزمایشی در قالب طرح کاملاً تصادفی شامل هشت گروه آزمایشی و پنج تکرار انجام شد. گروه­های آزمایشی شامل گروه سیلاژ ذرت بدون افزودنی (CS)، گروه سیلاژ ذرت با افزودنی ملاس در سطح  4 درصد (CSMol)، گروه سیلاژ ذرت با افزودنی سیب­زمینی در سطح 3 درصد (CSPot3) و گروه سیلاژ ذرت با افزودنی سیب­زمینی در سطح 6 درصد (CSPot6) بودند. علاوه بر گروه­های آزمایشی مذکور، چهار گروه دیگر نیز با مکمل باکتری تلقیح شدند. بالاترین مقدار ماده خشک، پروتئین خام، خاکستر و کربوهیدرات غیر الیافی و همچنین پایین­ترین مقدار الیاف نامحلول در شوینده خنثی در گروه ازمایشی CSMol همراه با تلقیح باکتریایی مشاهده گردید. کاهش معنی­دار pH در گروه­های آزمایشی همراه با تلقیح باکتریایی در مقایسه با گروه­های آزمایشی بدون تلقیح باکتریایی مشاهده شد (05/0>P) بطوریکه کمترین میزان pH مربوط به گروه آزمایشی CSMol همراه با تلقیح باکتریایی بود. بیشترین غلظت اسید لاکتیک، اسید استیک و اسید پروپیونیک و کمترین غلظت اسید بوتیریک و نیتروژن آمونیاکی در گروه آزمایشی CSMol همراه با تلقیح باکتریایی یافت شد (05/0>P). کمترین غلظت اسید استیک در گروه آزمایشی CSPot3 بدون تلقیح باکتریایی مشاهده شد که تفاوت معنی­داری با گروه­های آزمایشی CS و CSPot6 بدون تلقیح باکتریایی نداشت (05/0<P). به ترتیب بیشترین و کمترین میزان قابلیت هضم ماده آلی در گروه آزمایشی CSMol همراه با تلقیح باکتریایی و گروه آزمایشی CSPot3 بدون تلقیح باکتریایی بود (05/0>P). گاز تولید شده طی 24 ساعت انکوباسیون در گروه آزمایشی CSMol همراه با تلقیح باکتریایی بیشترین مقدار بود که تفاوت معنی­داری با گروه های آزمایشی CSPot3 و CSPot6 همراه با تلقیح باکتریایی نداشت (05/0<P). بطور کل، افزودن ملاس همراه با تلقیح باکتریایی باعث بهبود غلظت اسیدهای چرب فرار و قابلیت هضم ماده آلی در سیلاژ ذرت می­گردد. همچنین می توان از سیب زمینی همراه با تلقیح باکتریایی برای بهبود کیفیت تخمیری سیلاژ ذرت استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of using boiled potato waste, molasses and bacterial inoculation on chemical composition, fermentation quality and in vitro gas production in corn silage

نویسندگان [English]

  • Mahsa- Taleb
  • Ali Mahdavi
  • Ata Mahdavi
  • Babak Darabighane
Animal Science Department, Faculty Of Veterinary Medicine, Semnan University
چکیده [English]

The objective of this study was to assess and compare the impacts of incorporating boiled potatoe or molasses, with or without bacterial inoculation, on the chemical composition, fermentation quality, and in vitro gas production in corn silage. The experiment followed a completely randomized design with eight experimental groups and five repetitions. The experimental groups comprised the corn silage group without additives (CS), corn silage group with 4% molasses additive (CSMol), corn silage group with 3% potato additive (CSPot3), and corn silage group with 6% potato additive (CSPot6). Additionally, four groups, including the aforementioned ones, were inoculated with bacterial supplements.The CSMol group with bacterial inoculation exhibited the highest levels of dry matter, crude protein, ash, and nonfibrous carbohydrates, as well as the lowest amount of insoluble fibers in neutral detergent fiber. There was a significant decrease in pH in the bacterial-inoculated groups compared to those without bacterial inoculation (P<0.05), with the lowest pH observed in the CSMol group with bacterial inoculation. The CSMol experimental group with bacterial inoculation showed the highest concentrations of lactic acid, acetic acid, and propionic acid, along with the lowest concentrations of butyric acid and ammonia nitrogen (P<0.05). The lowest concentration of acetic acid was noted in the CSPot3 group without bacterial inoculation, which did not significantly differ from the CS and CSPot6 groups without bacterial inoculation (P<0.05). The highest and lowest levels of organic matter digestibility were observed in the CSMol group with bacterial inoculation and CSPot3 group without bacterial inoculation, respectively (P<0.05). The gas produced during the 24-hour incubation period was highest in the CSMol group with bacterial inoculation, not significantly different from the CSPot3 and CSPot6 groups with bacterial inoculation (P<0.05). In conclusion, adding molasses with bacterial inoculation enhances the concentration of volatile fatty acids and organic matter digestibility in corn silage. Additionally, potatoes, when used with bacterial inoculation, can improve the fermentation quality of corn silage.

کلیدواژه‌ها [English]

  • corn silage
  • potato
  • molasses
  • fermentation
قورچی، ت.، قنبری، فرزاد و ابراهیم، ط. 1391. بررسی تاثیر افزودنیهای مختلف بر پایداری هوازی، ترکیب شیمیایی و میکروبهای سیلاژ ذرت. نشریه پژوهش های علوم دامی، 4 (4). 235-244.
Aksu, T., Baytok, E., Karslı, M. A., and Muruz, H. 2006. Effects of formic acid, molasses and inoculant additives on corn silage composition, organic matter digestibility and microbial protein synthesis in sheep. Small Ruminant Research, 61(1), 29-33.
AOAC. 2005. "Official methods of analysis of agricultural chemists". Virginia, D.C.
Babaeinasab Y., Rouzbehan Y., Fazaeli H. and Rezaei J. 2015. Chemical composition silage fermentation characteristics and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage. Journal of Animal Science. 93(9), 4377-4386. 
Bach, S., Yada, R. Y., Bizimungu, B., Fan, M., and Sullivan, J. A. 2013. Genotype by environment interaction effects on starch content and digestibility in potato (Solanum tuberosum L.). Journal of agricultural and food chemistry, 61(16), 3941-3948.
Bautista-Trujillo, G. U., Cobos, M. A., Ventura-Canseco, L. M. C., Ayora-Talavera, T., Abud-Archila, M., Oliva-Llaven, M. A., and Gutiérrez-Miceli, F. A. 2009. Effect of sugarcane molasses and whey on silage quality of maize. Asian journal of crop science, 1(1), 34-39.
Baytok, E., Aksu, T., Karsli, M., and Muruz, H. 2005. The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. Turkish Journal of Veterinary & Animal Sciences, 29(2), 469-474.
Bolsen, K. K., Ashbell, G., & Weinberg, Z. G. 1996. Silage fermentation and silage additives-Review. Asian-Australasian journal of animal sciences, 9(5), 483-494.
Cajarville, C., Britos, A., Garciarena, D., and Repetto, J. L. 2012. Temperate forages ensiled with molasses or fresh cheese whey: Effects on conservation quality, effluent losses and ruminal degradation. Animal Feed Science and Technology, 171(1), 14-19.
Chen, L., Guo, G., Yuan, X., Shimojo, M., Yu, C., and Shao, T. 2014. Effect of applying molasses and propionic acid on fermentation quality and aerobic stability of total mixed ration silage prepared with whole-plant corn in Tibet. Asian-Australasian journal of animal sciences, 27(3), 349.
Church, D. C. (1991). Livestock feeds and feeding, Prentice Hall.
Filya, I. 2003. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. Journal of dairy science, 86(11), 3575-3581.
Fraser, M., and Fychan. 2000. Voluntary intake, digestibility and nitrogen utilization by sheep fed ensiled forage legumes. Grass and Forage Science, 55(3), 271-279.
Getachew, G., Blümmel, M., Makkar, H. P. S., and Becker, K. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72(3-4), 261-281.
Getachew, G., DePeters, E., and Robinson, P. 2004. In vitro gas production provides effective method for assessing ruminant feeds. California agriculture, 58(1), 54-58.
Givens, D. I., Moss, A. R., and Everington, J. M. 1992. Nutritional value of cane molasses in diets of grass silage and concentrates fed to sheep. Animal feed science and technology, 38(4), 281-291.
Guney, M., Demirel, M., Celik, S., Bakici, Y., and Levendoğlu, T. 2007. Effects of Urea, Molasses and Urea plus Molasses supplementation to sorghum silage on the silage quality, in vitro organic matter digestibility and metabolic energy contents. Journal of Biological Sciences, 7(2), 401-404.
Gwayumba, W. 1997. Lactic acid bacterial inoculants and fibrolytic enzymes in forage preservation and degradability, University of Saskatchewan.
Haigh, P. M., and Parker, J. W. G. 1985. Effect of silage additives and wilting on silage fermentation, digestibility and intake, and on liveweight change of young cattle. Grass and Forage Science, 40(4), 429-436.
Huisden, C. M., Adesogan, A. T., Kim, S. C., and Ososanya, T. 2009. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 92(2), 690-697.
Islam, M., Enishi, O., Purnomoadi, A., Higuchi, K., Takusari, N., and Terada, F. 2001. Energy and protein utilization by goats fed Italian ryegrass silage treated with molasses, urea, cellulase or cellulase+ lactic acid bacteria. Small Ruminant Research, 42(1), 49-60.
Kholif, S. M., Abo-El-Nor, S. A. H., and Khorshed, M. M. 2007. Effect of adding some chemical agents to ensiled vegetable and fruit market wastes on silage quality and the performance of lactating goats. Inter. J. Dairy Sci, 2(4), 312-320.
Kung, L. I. M. I. N., & Muck, R. E. 1997. Animal response to silage additives. In Proceedings of the conference on Silage: Field to feedbunk. North American Conference Hershey, PA. NRAES-99.
Kung, L., and  Shaver, R. 2001. Interpretation and use of silage fermentation analysis reports. Focus on forage, 3(13), 1-5.
Kung,  L., Shaver, R. D., Grant, R. J., and Schmidt, R. J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of dairy Science, 101(5), 4020-4033.
Lima, R., Díaz, R. F., Castro, A., Hoedtke, S., and Fievez, V. 2011. Multifactorial models to assess responses to sorghum proportion, molasses and bacterial inoculant on in vitro quality of sorghum–soybean silages. Animal feed science and technology, 164(3-4), 161-173.
Lima, R., Lourenço, M., Diaz, R. F., Castro, A., and  Fievez, V. 2010. Effect of combined ensiling of sorghum and soybean with or without molasses and lactobacilli on silage quality and in vitro rumen fermentation. Animal Feed Science and Technology, 155(2-4), 122-131.
Mahala, A. G., & Khalifa, I. M. 2007. The effect of molasses levels on quality of sorghum (Sorghum bicolor) silage. Res. J. Anim. Vet. Sci, 2, 43-46.
Maheri-Sis, N., Chamani, M., Ali-Asghar, S., Mirza-Aghazadeh, A., and Aghajanzadeh-Golshani, A. 2008. Nutritional evaluation of kabuli and desi type chickpeas (Cicer arietinum L.) for ruminants using in vitro gas production technique. African Journal of Biotechnology, 7(16).
McDonald, P. 1981. "The biochemistry of silage).
McDonald, P. 1991. "Microorganisms." The biochemistry of silage: 81-151.
McDonald, P.، et al. 1991. "The Biochemistry of Silage".
 McDonald, P., et al. 2010. "Chapter 19: Silage. In: Animal Nutrition, sev-enth ed., pp. 499–520.
Menke K.H. and steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development. 28, 7-55.
Moon, N. J. 1981. Effect of inoculation of vegetable processing wastes with Lactobacillus plantarum on silage fermentation. Journal of the Science of Food and Agriculture, 32(7), 675-683.
Muck, R. 1987. "Dry matter level effects on alfalfa silage quality I. Nitrogen transformations." Transactions of the ASAE 30(1): 7-0014.
Muck, R. E., Filya, I. S. M. A. I. L., and Contreras-Govea, F. E. 2007. Inoculant effects on alfalfa silage: in vitro gas and volatile fatty acid production. Journal of dairy science, 90(11), 5115-5125.
Nayigihugu, V., Kellogg, D. W., Johnson, Z. B., Scott, M., and Anschutz, K. S. 1995. Effects of adding levels of molasses on composition of bermudagrass (Cynodon dactylon) silage. Journal of Animal Science, 73, 200.
Negesse, T., Makkar, H. P. S., and Becker, K. 2009. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Animal feed science and technology, 154(3-4), 204-217.
Nkosi, B. D., Meeske, R., Langa, T., Motiang, M. D., Mutavhatsindi, T. F., Thomas, R. S.,  and Baloyi, J. J. 2015. The influence of ensiling potato hash waste with enzyme/bacterial inoculant mixtures on the fermentation characteristics, aerobic stability and nutrient digestion of the resultant silages by rams. Small Ruminant Research, 127, 28-35.
Nkosi, B. D., Meeske, R., Palic, D., and  Langa, T. 2009. Laboratory evaluation of an inoculant for ensiling whole crop maize in South Africa. Animal feed science and technology, 150(1-2), 144-150.
Nkosi, B. D., Meeske, R., Van der Merwe, H. J., and Groenewald, I. B. 2010a. Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Animal Feed Science and Technology, 157(3-4), 195-200.
Nkosi, B. D., and Nkosi, R. 2010b. Effects of whey and molasses as silage additives on potato hash silage quality and growth performance of lambs. South African Journal of Animal Science, 40(3), 229-237.
Pahlow, G., Muck, R. E., Driehuis, F., Elferink, S. J. O., and Spoelstra, S. F. 2003. Microbiology of ensiling. Silage science and technology, 42, 31-93.
Rezaei, J., Rouzbehan, Y., and Fazaeli, H. 2009. Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Animal Feed Science and Technology, 151(1-2), 153-160.
Salem, A. Z., ZHOU, C. S., TAN, Z. L., Mellado, M., Salazar, M. C., Elghandopur, M. M., and Odongo, N. E. 2013. In vitro ruminal gas production kinetics of four fodder trees ensiled with or without molasses and urea. Journal of Integrative Agriculture, 12(7), 1234-1242.
Sandoval-Castro, C. A., Lizarraga-Sanchez, H. L., and Solorio-Sanchez, F. J. 2005. Assessment of tree fodder preference by cattle using chemical composition, in vitro gas production and in situ degradability. Animal Feed Science and Technology, 123, 277-289.
SAS. (2005). Statistical Analysis System. SAS Intit. Inc. Cary. NC. USA.
Tang, S. X., Tayo, G. O., Tan, Z. L., Sun, Z. H., Wang, M., Ren, G. P., and Han, X. F. 2008. Use of in vitro gas production technique to investigate interactions between rice straw, wheat straw, maize stover and alfalfa or clover. Asian-Australasian Journal of Animal Sciences, 21(9), 1278-1285.
Van Niekerk, W. A., Hassen, A., Bechaz, F. M., and Coertze, R. J. 2007. Fermentative attributes of wilted vs. unwilted Digitaria eriantha silage treated with or without molasses at ensiling. South African Journal of Animal Science, 37(4), 261-268.
Van Soest, P. V., Robertson, J. B., and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science, 74(10), 3583-3597.
Wolin, M. J. 1960. A theoretical rumen fermentation balance. Journal of Dairy Science, 43(10), 1452-1459.
ZoBell, D. R., Okine, E. K., Olson, K. C., Wiedmeier, R. D., Goonewardene, L. A., and Stonecipher, C. 2004. The feasibility of feeding high levels of whey silage and effects on production in growing cattle. J. Anim. & vet. Advances, 3, 804.