مروری بر روش های آزمایشگاهی تشخیص مقاومت های آنتی بیوتیکی با تاکید بر شناسایی سویه های مولد آنزیم بتالاکتاماز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پاتوبیولوژی دانشکده دامپزشکی دانشگاه سمنان

2 دانشجو، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه سمنان، سمنان، ایران

3 گروه آموزشی پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه سمنان

10.22075/jvlr.2025.36795.1150

چکیده

در سال‌های اخیر، افزایش مصرف آنتی‌بیوتیک‌ها در حوزه‌های مختلفی نظیر پزشکی، دامپزشکی و کشاورزی، به شکل‌گیری و گسترش انواع مختلفی از مقاومت‌های آنتی‌بیوتیکی در سطح جهانی منجر شده است. ظهور این مقاومت‌ها نه‌تنها میزان مرگ‌ومیر بیماران را افزایش داده، بلکه خسارات اقتصادی قابل‌توجهی، به‌ویژه در کشورهای در حال توسعه، وارد کرده است. یکی از نگرانی‌های عمده در حوزه سلامت عمومی، گسترش باکتری‌های تولیدکننده آنزیم‌های بتالاکتاماز است. شناسایی سریع و دقیق این باکتری‌های مقاوم در کنترل مؤثر بیماری‌های عفونی، درمان به‌موقع و جلوگیری از شیوع بیشتر آن‌ها از اهمیت بالایی برخوردار است. در حال حاضر، روش‌های متعددی برای شناسایی مقاومت‌های آنتی‌بیوتیکی، از جمله مقاومت ناشی از تولید انواع آنزیم‌های بتالاکتاماز، به کار گرفته می‌شود. با این حال، تاکنون هیچ روش آزمایشگاهی واحدی که از حساسیت و ویژگی تشخیصی صددرصدی برخوردار بوده و تمامی ویژگی‌های ایده‌آل یک آزمون تشخیصی مطلوب را دارا باشد، معرفی نشده است. بر این اساس، هدف از مطالعه حاضر، بررسی و مرور جامع انواع روش‌های تشخیص مقاومت آنتی‌بیوتیکی، شامل روش‌های مبتنی بر کشت (نظیر انتشار دیسک، رقت‌سازی و آزمون اپسیلومتر یاE-test )، روش‌های مولکولی و رویکردهای نوظهور است. همچنین، در این مطالعه به ارزیابی مزایا و محدودیت‌های هر یک از این روش‌ها پرداخته شده و چالش‌های موجود در تست‌های تعیین حساسیت آنتی‌بیوتیکی به همراه چشم‌اندازهای آینده آن‌ها مورد بررسی قرار گرفته است.
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of Laboratory Methods for Diagnosing Antibiotic Resistance with Emphasis on Identifying Beta-Lactamase-Producing Strains

نویسندگان [English]

  • Khaterh Kafshdouzan 1
  • Faeze Emarloo 2
  • heidar Rahimi 3
1 Department of pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
2 Department of Clincal Science, faculty of veterinary medicine, Semnan University
3 Department of Pathobiology,, faculty of veterinary medicine, Semnan, Iran
چکیده [English]

The widespread and often indiscriminate use of antibiotics in medicine, veterinary practice, and agriculture has led to the emergence and global spread of diverse forms of antibiotic resistance. The rise of antibiotic resistance has not only increased patient mortality but has also imposed significant economic losses, particularly in developing countries. Among the most pressing concerns is the proliferation of β-lactamase-producing bacteria, which undermine the efficacy of β-lactam antibiotics. Rapid and accurate identification of resistant bacteria is critical for controlling infectious diseases, ensuring timely treatment, and preventing further transmission. A variety of diagnostic methods are currently employed to identify resistance mechanisms, including culture-based assays (e.g., disk diffusion, broth/agar dilution, E-test), molecular techniques, and emerging technologies. However, no single method offers complete sensitivity and specificity while meeting all the criteria for an ideal diagnostic tool. This review critically examines current methodologies for detecting antibiotic resistance, with a particular focus on β-lactamase-mediated resistance. The strengths and limitations of each approach are discussed, alongside current challenges in antimicrobial susceptibility testing and future directions for advancing diagnostic accuracy and efficiency.
 
 

کلیدواژه‌ها [English]

  • Antibiotics
  • Antibiotic Resistance
  • Extended-Spectrum Beta-Lactamases (ESBLs)
  • Phenotypic Methods
  • Molecular Methods
Florio, W., Baldeschi, L., Rizzato, C., Tavanti, A., Ghelardi, E., & Lupetti, A. (2020). Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area [Mini Review]. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.572909
Fluit, A. C., Visser, M. R., & Schmitz, F. J. (2001). Molecular detection of antimicrobial resistance. Clin Microbiol Rev, 14(4), 836-871, table of contents. https://doi.org/10.1128/cmr.14.4.836-871.2001
de Kraker, M. E., Stewardson, A. J., & Harbarth, S. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med, 13(11), e1002184. https://doi.org/10.1371/journal.pmed.1002184
Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infect Drug Resist, 12, 3903-3910. https://doi.org/10.2147/idr.S234610
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Silley, P. (2012). Susceptibility testing methods, resistance and breakpoints: what do these terms really mean? Rev Sci Tech, 31(1), 33-41. https://doi.org/10.20506/rst.31.1.2097
Pierce-Hendry, S. A., & Dennis, J. (2010). Bacterial culture and antibiotic susceptibility testing. Compend Contin Educ Vet, 32(7), E1-5; quiz E6.
Kaur, J., Chopra, S., Sheevani, & Mahajan, G. (2013). Modified Double Disc Synergy Test to Detect ESBL Production in Urinary Isolates of Escherichia coli and Klebsiella pneumoniae. J Clin Diagn Res, 7(2), 229-233. https://doi.org/10.7860/jcdr/2013/4619.2734
Khan, Z. A., Siddiqui, M. F., & Park, S. (2019). Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics (Basel), 9(2). https://doi.org/10.3390/diagnostics9020049
Brown, D. F., & Brown, L. (1991). Evaluation of the E test, a novel method of quantifying antimicrobial activity. J Antimicrob Chemother, 27(2), 185-190. https://doi.org/10.1093/jac/27.2.185
McLain, J. E., Cytryn, E., Durso, L. M., & Young, S. (2016). Culture-based Methods for Detection of Antibiotic Resistance in Agroecosystems: Advantages, Challenges, and Gaps in Knowledge. J Environ Qual, 45(2), 432-440. https://doi.org/10.2134/jeq2015.06.0317
Erfani, Y., Safdari, R., Chobineh, H., Mir Salehian, A., Rasti, A., Eynollahi, N., Mir Afshar, S. M., Yazdanbod, H., Hamidian, M., & Soltanian, A. (2008). Comparison of E.test and Disk Diffusion Agar in Detection of Antibiotic Susceptibility of E.coli Isolated from Patients with Urinary Tract Infection in Tehran Shariati Hospital [Original]. Avicenna Journal of Clinical Medicine, 15(2), 27-31. http://sjh.umsha.ac.ir/article-1-367-fa.html
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 74(3), 417-433. https://doi.org/10.1128/mmbr.00016-10
Luber, P., Bartelt, E., Genschow, E., Wagner, J., & Hahn, H. (2003). Comparison of broth microdilution, E Test, and agar dilution methods for antibiotic susceptibility testing of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol, 41(3), 1062-1068. https://doi.org/10.1128/jcm.41.3.1062-1068.2003
Jaton, K., Ninet, B., Bille, J., & Greub, G. (2010). False-negative PCR result due to gene polymorphism: the example of Neisseria meningitidis. J Clin Microbiol, 48(12), 4590-4591. https://doi.org/10.1128/jcm.01766-10
Kralik, P., & Ricchi, M. (2017). A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front Microbiol, 8, 108. https://doi.org/10.3389/fmicb.2017.00108
Naas, T., Cuzon, G., Bogaerts, P., Glupczynski, Y., & Nordmann, P. (2011). Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum β-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J Clin Microbiol, 49(4), 1608-1613. https://doi.org/10.1128/jcm.02607-10
Kanlidere, Z., Karatuna, O., & Kocagöz, T. (2019). Rapid detection of beta-lactamase production including carbapenemase by thin layer chromatography. J Microbiol Methods, 156, 15-19. https://doi.org/10.1016/j.mimet.2018.11.016
von Wintersdorff, C. J., Penders, J., van Niekerk, J. M., Mills, N. D., Majumder, S., van Alphen, L. B., Savelkoul, P. H., & Wolffs, P. F. (2016). Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front Microbiol, 7, 173. https://doi.org/10.3389/fmicb.2016.00173
Bristow, C. C., Mortimer, T. D., Morris, S., Grad, Y. H., Soge, O. O., Wakatake, E., Pascual, R., Murphy, S. M., Fryling, K. E., Adamson, P. C., Dillon, J. A., Parmar, N. R., Le, H. H. L., Van Le, H., Ovalles Ureña, R. M., Mitchev, N., Mlisana, K., Wi, T., Dickson, S. P., & Klausner, J. D. (2023). Whole-Genome Sequencing to Predict Antimicrobial Susceptibility Profiles in Neisseria gonorrhoeae. J Infect Dis, 227(7), 917-925. https://doi.org/10.1093/infdis/jiad027
Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., & Imai, S. (2005). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother, 11(5), 211-219. https://doi.org/10.1007/s10156-005-0408-9
Singh, S., Numan, A., & Cinti, S. (2022). Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem, 94(1), 26-40. https://doi.org/10.1021/acs.analchem.1c03856
Di Bonaventura, G., Ricci, E., Della Loggia, N., Catamo, G., & Piccolomini, R. (1998). Evaluation of the E test for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from patients with long-term bladder catheterization. J Clin Microbiol, 36(3), 824-826. https://doi.org/10.1128/jcm.36.3.824-826.1998
van Belkum, A., Bachmann, T. T., Lüdke, G., Lisby, J. G., Kahlmeter, G., Mohess, A., Becker, K., Hays, J. P., Woodford, N., Mitsakakis, K., Moran-Gilad, J., Vila, J., Peter, H., Rex, J. H., & Dunne, W. M., Jr. (2019). Developmental roadmap for antimicrobial susceptibility testing systems. Nat Rev Microbiol, 17(1), 51-62. https://doi.org/10.1038/s41579-018-0098-9
Dally, S., Lemuth, K., Kaase, M., Rupp, S., Knabbe, C., & Weile, J. (2013). DNA microarray for genotyping antibiotic resistance determinants in Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother, 57(10), 4761-4768. https://doi.org/10.1128/aac.00863-13
Reuter, S., Ellington, M. J., Cartwright, E. J., Köser, C. U., Török, M. E., Gouliouris, T., Harris, S. R., Brown, N. M., Holden, M. T., Quail, M., Parkhill, J., Smith, G. P., Bentley, S. D., & Peacock, S. J. (2013). Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med, 173(15), 1397-1404. https://doi.org/10.1001/jamainternmed.2013.7734
Behera, B., Mathur, P., Das, A., Kapil, A., & Sharma, V. (2008). AN EVALUATION OF FOUR DIFFERENT PHENOTYPIC TECHNIQUES FOR DETECTION OF METALLO-β-LACTAMASE PRODUCING PSEUDOMONAS AERUGINOSA. Indian Journal of Medical Microbiology, 26(3), 233-237. https://doi.org/https://doi.org/10.1016/S0255-0857(21)01868-5
Leverstein-van Hall Maurine, A., Fluit Ad, C., Paauw, A., Box Adrienne, T. A., Brisse, S., & Verhoef, J. (2002). Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 Automated Instruments for Detection of Extended-Spectrum Beta-Lactamases in Multiresistant Escherichia coli and Klebsiella spp. Journal of clinical microbiology, 40(10), 3703-3711. https://doi.org/10.1128/jcm.40.10.3703-3711.2002
Schumacher, A., Vranken, T., Malhotra, A., Arts, J. J. C., & Habibovic, P. (2018). In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models. European Journal of Clinical Microbiology & Infectious Diseases, 37(2), 187-208. https://doi.org/10.1007/s10096-017-3089-2
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/https://doi.org/10.1016/j.jpha.2015.11.005
Visalli, M. A., Jacobs, M. R., Moore, T. D., Renzi, F. A., & Appelbaum, P. C. (1997). Activities of beta-lactams against Acinetobacter genospecies as determined by agar dilution and E-test MIC methods. Antimicrobial agents and chemotherapy, 41(4), 767-770.
Wikler, M. A. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. Clsi (Nccls), 26, M7-A7.
Wayne, P. (2010). Clinical and Laboratory Standards Institute (CLSI); 2010. Performance standards for antimicrobial susceptibility testing, 20, 1-5.
Gajic, I., Kabic, J., Kekic, D., Jovićević, M., Milenkovic, M., Mitić-Ćulafić, D., Trudic, A., Ranin, L., & Opavski, N. (2022). Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics, 11, 427. https://doi.org/10.3390/antibiotics11040427
Kafshdouzan, K. (2020). Prevalence of CTX-M-1 gene in Escherichia coli isolated from broilers in Semnan province of Iran. Journal of Veterinary Laboratory Research, 12(1), 79-87.
Abushaheen, M. A., Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., Rathod, S., Divakar, D. D., Jhugroo, C., & Vellappally, S. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, 66(6), 100971.
Lye, D. C., Kwa, A. L., & Chlebicki, P. (2011). World health day 2011: Antimicrobial resistance and practical solutions. Annals of the Academy of Medicine-Singapore, 40(4), 156.
Anjum, M. F., Zankari, E., & Hasman, H. (2018). Molecular methods for detection of antimicrobial resistance. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals, 33-50.
Ali, J., Rafiq, Q. A., & Ratcliffe, E. (2018). Antimicrobial resistance mechanisms and potential synthetic treatments. Future science OA, 4(4), FSO290.
Malekpour, B., Kafshdouzan, K., Javan, A. J., & Bejestani, M. R. S. (2019). Inhibition of TEMbla Producing Escherichia coli Isolated From Poultry Colibacillosis Using Cinnamomum camphora and Syzygium aromaticum Essential Oils. Avicenna Journal of Clinical Microbiology and Infection, 6(3), 88-94.
Huang, W.-L., Hsu, Z.-J., Chang, T., & Jou, R. (2014). Rapid and accurate detection of rifampin and isoniazid-resistant Mycobacterium tuberculosis using an oligonucleotide array. Clinical microbiology and infection, 20(9), O542-O549.
Saleh Nia Samak, A., & NOJOOMI, F.. (2019). Phenotypic study of Extended-spectrum Beta lactamase (ESBL) producing isolates of Acinetobacter baumannii in patients reffered to a military hospital in Guilan province. JOURNAL OF MOLECULAR AND CELLULAR RESEARCH (IRANIAN JOURNAL OF BIOLOGY), 32(4 ), 578-590. SID. https://sid.ir/paper/369698/en[Persian]
Bogaerts, P., Cuzon, G., Evrard, S., Hoebeke, M., Naas, T., & Glupczynski, Y. (2016). Evaluation of a DNA microarray for rapid detection of the most prevalent extended-spectrum β-lactamases, plasmid-mediated cephalosporinases and carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter. International journal of antimicrobial agents, 48(2), 189-193.
Lay Jr, J. O. (2001). MALDI‐TOF mass spectrometry of bacteria. Mass spectrometry reviews, 20(4), 172-194.
Jung, J., Eberl, T., Sparbier, K., Lange, C., Kostrzewa, M., Schubert, S., & Wieser, A. (2014). Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. European Journal of Clinical Microbiology & Infectious Diseases, 33, 949-955.
Ma, S., Amin, M. Y. A., Pawar, J., Akhter, N., & Lucy, I. (2023). Conventional Methods and Future Trends in Antimicrobial Susceptibility Testing. Saudi Journal of Biological Sciences, 30, 103582. https://doi.org/10.1016/j.sjbs.2023.103582
Gajic, I., Kabic, J., Kekic, D., Jovicevic, M., Milenkovic, M., Mitic Culafic, D., Trudic, A., Ranin, L., & Opavski, N. (2022). Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics, 11(4), 427.
Wooldridge, M. (2012). Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. Revue scientifique et technique (International Office of Epizootics), 31(1), 231-247.
Kurittu, P., Khakipoor, B., Jalava, J., Karhukorpi, J., & Heikinheimo, A. (2022). Whole-genome sequencing of extended-spectrum beta-lactamase-producing Escherichia coli from human infections in Finland revealed isolates belonging to internationally successful ST131-C1-M27 subclade but distinct from non-human sources. Frontiers in Microbiology, 12, 789280.
Tellapragada, C., Hasan, B., Antonelli, A., Maruri, A., de Vogel, C., Gijon, D., Coppi, M., Verbon, A., van Wamel, W., & Rossolini, G. (2020). Isothermal microcalorimetry minimal inhibitory concentration testing in extensively drug resistant Gram-negative bacilli: a multicentre study. Clinical microbiology and infection, 26(10), 1413. e1411-1413. e1417.
von Ah, U., Shani, N., Chollet, M., Solokhina, A., & Braissant, O. (2018). Measuring antibiotic resistance in mixed cultures: Isothermal microcalorimetry as a novel analytical tool. International Dairy Journal, 77, 73-79. https://doi.org/https://doi.org/10.1016/j.idairyj.2017.09.007
Sultan, A. R., Tavakol, M., Lemmens-den Toom, N. A., Croughs, P. D., Verkaik, N. J., Verbon, A., & van Wamel, W. J. B. (2022). Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry. PLOS ONE, 17(2), e0260272. https://doi.org/10.1371/journal.pone.0260272
Davison, H. C., Woolhouse, M. E. J., & Low, J. C. (2000). What is antibiotic resistance and how can we measure it? Trends in Microbiology, 8(12), 554-559. https://doi.org/https://doi.org/10.1016/S0966-842X(00)01873-4
Song, D., & Lei, Y. (2021). Mini-review: Recent advances in imaging-based rapid antibiotic susceptibility testing. Sensors and Actuators Reports, 3, 1. https://doi.org/https://doi.org/10.1016/j.snr.2021.100053
Kaprou, G. D., Bergšpica, I., Alexa, E. A., Alvarez-Ordóñez, A., & Prieto, M. (2021). Rapid methods for antimicrobial resistance diagnostics. Antibiotics, 10(2), 209.
Poole, K. (2002). Mechanisms of bacterial biocide and antibiotic resistance. Journal of Applied Microbiology, 92(s1), 55S-64S. https://doi.org/https://doi.org/10.1046/j.1365-2672.92.5s1.8.x
Toosky, M. N., Grunwald, J. T., Pala, D., Shen, B., Zhao, W., D’Agostini, C., Coghe, F., Angioni, G., Motolese, G., & Abram, T. J. (2020). A rapid, point-of-care antibiotic susceptibility test for urinary tract infections. Journal of Medical Microbiology, 69(1), 52-62.
McLain, J. E., Cytryn, E., Durso, L. M., & Young, S. (2016). Culture-based Methods for Detection of Antibiotic Resistance in Agroecosystems: Advantages, Challenges, and Gaps in Knowledge. Journal of Environmental Quality, 45(2), 432-440. https://doi.org/https://doi.org/10.2134/jeq2015.06.0317
Lazou, T. P., & Chaintoutis, S. C. (2023). Comparison of disk diffusion and broth microdilution methods for antimicrobial susceptibility testing of Campylobacter isolates of meat origin. Journal of Microbiological Methods, 204, 106649. https://doi.org/https://doi.org/10.1016/j.mimet.2022.106649
Gazin, M., Paasch, F., Goossens, H., & Malhotra-Kumar, S. (2012). Current Trends in Culture-Based and Molecular Detection of Extended-Spectrum-beta-Lactamase-Harboring and Carbapenem-Resistant Enterobacteriaceae. Journal of clinical microbiology, 50(4), 1140-1146. https://doi.org/doi:10.1128/JCM.06852-11
Van Belkum, A., & Dunne Jr, W. M. (2013). Next-generation antimicrobial susceptibility testing. Journal of clinical microbiology, 51(7), 2018-2024.
Jorgensen, J. H., & Turnidge, J. D. (2015). Susceptibility test methods: dilution and disk diffusion methods. Manual of clinical microbiology, 1253-1273.
Sahoo, R., Jadhav, S., & Nema, V. (2024). Journey of technological advancements in the detection of antimicrobial resistance. Journal of the Formosan Medical Association, 123(4), 430-441. https://doi.org/https://doi.org/10.1016/j.jfma.2023.08.008
Jorgensen, J. H., & Turnidge, J. D. (2015). Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In Manual of clinical microbiology (pp. 1253-1273). https://doi.org/https://doi.org/10.1128/9781555817381.ch71
Turnidge, J., & Bell, J. (2005). Antimicrobial susceptibility on solid media. Antibiotics in laboratory medicine, 8-60.
Garrec, H., Drieux-Rouzet, L., Golmard, J.-L., Jarlier, V., & Robert, J. (2011). Comparison of Nine Phenotypic Methods for Detection of Extended-Spectrum -beta-Lactamase Production by Enterobacteriaceae. Journal of clinical microbiology, 49(3), 1048-1057. https://doi.org/doi:10.1128/JCM.02130-10
Lalitha, M.(2004). Manual on antimicrobial susceptibility testing. Performance standards for antimicrobial testing: Twelfth Informational Supplement, 56238, 454-456.
Braissant, O., Bonkat, G., & Bachmann, A. (2016). Isothermal Microcalorimetry for the Investigation of Clinical Samples: Past and Present. In (pp. 363-380). https://doi.org/10.1201/b20161-24
Au - Cirnski, K., Au - Coetzee, J., Au - Herrmann, J., & Au - Müller, R. (2020). JoVE(164), e61703. https://doi.org/doi:10.3791/61703