Molecular detection of members of Borrelia genus in duck blood sample using nested-PCR method

Document Type : Original Article

Authors

1 Departement of Pathobiology, faculty of Veterinary Medicine, Semnan University, Semnan, Iran

2 Semnan university

Abstract

Birds are among the most important reservoirs of Borrelia and play a key role in the transmission of infection to humans. Therefore, the aim of the present study was the molecular detection of Borrelia species in duck blood samples using the nested PCR method. In this study, blood samples were collected from 200 native ducks in the Mazandaran region. At the time of sampling, information such as the gender and age of each bird was recorded. Blood was drawn from the brachial vein of the wing and collected in EDTA-containing tubes. Following blood smear preparation and slide examination, molecular analysis was performed using the PCR technique with specific primers to detect the presence of Borrelia infection in the sampled birds. In total, 200 duck samples were subjected to molecular examination. Nested-PCR was employed for the detection of Borrelia species. Both forward and reverse primers were used for species identification and, potentially, for gender differentiation of the pathogen. Preliminary nested-PCR analysis revealed that 2 out of the 200 ducks tested positive for Borrelia infection. Initially, 11 out of 36 microtubes containing samples tested positive in the nested-PCR machine, but subsequent confirmation tests narrowed the number of positive cases to 2. The results of this study highlight the presence of Borrelia infection in ducks from the Mazandaran province. These findings should be taken into account for biosecurity planning, especially to prevent disease transmission to local farms and humans, by observing appropriate public health and veterinary measures.
 
 

Keywords

Main Subjects


Alinezhad, P., Staji, H., & Sani, R. N. (2022). Comparison of three methods including temperature, H2O2/ascorbic acid/sonication, and nitrous acid treatments for overcoming the inhibitory effect of heparin on DNA amplification in realtime-PCR. International Journal of Biological Macromolecules, 209, 1298-1306.
Ang, C. W., Brandenburg, A. H., Van Burgel, N. D., Bijlmer, H. A., Herremans, T., Stelma, F., & van Dam, A. P. (2015). A Dutch nationwide evaluation of serological assays for detection of Borrelia antibodies in clinically well-defined patients. Diagnostic microbiology and infectious disease, 83(3), 222-228.
Baarsma, M. E., Schellekens, J. F. P., Meijer, B. C., Brandenburg, A. H., Souilljee, T., Hofhuis, A., & van Dam, A. P. (2020). Diagnostic parameters of modified two-tier testing in European patients with early Lyme disease. European Journal of Clinical Microbiology & Infectious Diseases, 39, 2143-2152.
Branda, J. A., & Steere, A. C. (2021). Laboratory diagnosis of Lyme borreliosis. Clinical microbiology reviews, 34(2), 10-1128.
Cleveland, C. A., Swanepoel, L., Brown, J. D., Casalena, M. J., Williams, L., & Yabsley, M. J. (2020). Surveillance for Borrelia spp. in upland game birds in Pennsylvania, USA. Veterinary Sciences, 7(3), 82.
Coburn, J., Leong, J., & Chaconas, G. (2013). Illuminating the roles of the Borrelia burgdorferi adhesins. Trends in microbiology, 21(8), 372-379.
Comstedt, P., Schüler, W., Meinke, A., & Lundberg, U. (2017). The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PloS one, 12(9), e0184357.
Davis, I. R., McNeil, S. A., Allen, W., MacKinnon-Cameron, D., Lindsay, L. R., Bernat, K., & Hatchette, T. F. (2020). Performance of a modified two-tiered testing enzyme immunoassay algorithm for serologic diagnosis of Lyme disease in Nova Scotia. Journal of clinical microbiology, 58(7), 10-1128.
Ghasemi, A., Naddaf, S. R., Mahmoudi, A., Rohani, M., Naeimi, S., Mordadi, A., & Mostafavi, E. (2021). Borrelia duttonii-like spirochetes parasitize Meriones persicus in East Azerbaijan Province of Iran. Ticks and Tick-borne Diseases, 12(6), 101825.
Joyner, G., Mavin, S., Milner, R., & Lim, C. (2022). Introduction of IgM testing for the diagnosis of acute Lyme borreliosis: a study of the benefits, limitations and costs. European Journal of Clinical Microbiology & Infectious Diseases, 41(4), 671-675.
Kang, J. G., Kim, H. C., Choi, C. Y., Nam, H. Y., Chae, H. Y., Chong, S. T., & Chae, J. S. (2013). Molecular detection of Anaplasma, Bartonella, and Borrelia species in ticks collected from migratory birds from Hong-do Island, Republic of Korea. Vector-Borne and Zoonotic Diseases, 13(4), 215-225.
Kugeler, K. J., Schwartz, A. M., Delorey, M. J., Mead, P. S., & Hinckley, A. F. (2021). Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerging infectious diseases, 27(2), 616.
Kuhn, H. W., Lasseter, A. G., Adams, P. P., Avile, C. F., Stone, B. L., Akins, D. R., ... & Jewett, M. W. (2021). BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLoS pathogens, 17(8), e1009869.
Li, Y., Oosting, M., Smeekens, S. P., Jaeger, M., Aguirre-Gamboa, R., Le, K. T., ... & Netea, M. G. (2016). A functional genomics approach to understand variation in cytokine production in humans. Cell, 167(4), 1099-1110.
Mohajer, F., Sheikh, Y., Staji, H., Keyvanlou, M., & Hashemzadeh, H. (2019). Evaluation of the Seroprevalence of AKABANE and Bluetongue viruses using competitive-ELISA in dairy cattle from industrial herds, Semnan suburb, Iran. Iranian Veterinary Journal, 15(3), 78-84.
Naddaf, S. R., Mahmoudi, A., Ghasemi, A., Rohani, M., Mohammadi, A., Ziapour, S. P., & Mostafavi, E. (2020). Infection of hard ticks in the Caspian Sea littoral of Iran with Lyme borreliosis and relapsing fever borreliae. Ticks and tick-borne diseases, 11(6), 101500.
Namroodi, S., Staji, H., & Dehmordeh, M. (2016). Frequency and antimicrobial resistance pattern of Salmonella Spp in asymptomatic rural dogs. Journal of Mazandaran University of Medical Sciences, 26(135), 153-157.
Oosting, M., Kerstholt, M., Ter Horst, R., Li, Y., Deelen, P., Smeekens, S., ... & Joosten, L. A. (2016). Functional and genomic architecture of Borrelia burgdorferi-induced cytokine responses in humans. Cell host & microbe, 20(6), 822-833.
Parsaeimehr, M., Khazaei, M., Jebellijavan, A., & Staji, H. (2019). The isolation and identification of dominant lactic acid bacteria by the sequencing of the 16S rRNA in traditional cheese (Khiki) in semnan, Iran. Journal of Human Environment and Health Promotion, 5(1), 15-20.
Phipps, L. P., Hansford, K. M., Hernández-Triana, L. M., Golding, M., McGinley, L., Folly, A. J., ... & Johnson, N. (2022). Detection of Borrelia and Babesia species in Haemaphysalis punctata ticks sampled in Southern England. Ticks and Tick-borne Diseases, 13(2), 101902.
Poisson, A., Boulinier, T., Bournez, L., Gonzalez, G., Migné, C. V., Moutailler, S., ... & Métras, R. (2024). Tick-borne zoonotic flaviviruses and Borrelia infections in wildlife hosts: what have field studies contributed?. One Health, 100747.
Sabin, A. P., Scholze, B. P., Lovrich, S. D., & Callister, S. M. (2023). Clinical evaluation of a Borrelia modified two-tiered testing (MTTT) shows increased early sensitivity for Borrelia burgdorferi but not other endemic Borrelia species in a high incidence region for Lyme disease in Wisconsin. Diagnostic Microbiology and Infectious Disease, 105(1), 115837.
Shifflett, S. A., Wiedmeyer, T., Kennedy, A., Maestas, L., Buoni, M., Ciloglu, A., & Ellis, V. A. (2023). Prevalence of Borrelia burgdorferi and diversity of its outer surface protein C (ospC) alleles in blacklegged ticks (Ixodes scapularis) in Delaware. Ticks and tick-borne diseases, 14(3), 102139.
Shirani, D., Rakhshanpoor, A., Cutler, S., Ghazinezhad, B., & Naddaf, S. R. (2016). A case of canine borreliosis in Iran caused by Borrelia persica. Ticks and tick-borne diseases, 7(3), 424-426.
Staji, H., Keyvanlou, M., Geraili, Z., Shahsavari, H., & Jafari, E. (2021). The first study of West Nile virus in feral pigeons (Columba livia domestica) using conventional reverse transcriptase PCR in Semnan and Khorasane-Razavi Provinces, Northeast of Iran. Journal of Arthropod-Borne Diseases, 15(1), 136.
Staji, H., Yousefi, M., Hamedani, M. A., Tamai, I. A., & Khaligh, S. G. (2021). Genetic characterization and phylogenetic of Anaplasma capra in Persian onagers. Equus hemionus onager.
Strnad, M., Rudenko, N., & Rego, R. O. (2023). Pathogenicity and virulence of Borrelia burgdorferi. Virulence, 14(1), 2265015.
Šujanová, A., Čužiová, Z., & Václav, R. (2022). The infection rate of bird-feeding Ixodes ricinus ticks with Borrelia garinii and B. valaisiana varies with host haemosporidian infection status. Microorganisms, 11(1), 60.
Vancová, M., Bílý, T., Šimo, L., Touš, J., Horodyský, P., Růžek, D., ... & Nebesářová, J. (2020). Three-dimensional reconstruction of the feeding apparatus of the tick Ixodes ricinus (Acari: Ixodidae): a new insight into the mechanism of blood-feeding. Scientific Reports, 10(1), 165.
Veiga, J., Balta, O., & Figuerola, J. (2024). Does bird life-history influence the prevalence of ticks? A citizen science study in North East Spain. One Health, 18, 100718.
Waddell, L. A., Greig, J., Mascarenhas, M., Harding, S., Lindsay, R., & Ogden, N. (2016). The accuracy of diagnostic tests for Lyme disease in humans, a systematic review and meta-analysis of North American research. PloS one, 11(12), e0168613.
Yuste, R. A., Muenkel, M., Axarlis, K., Benito, M. J. G., Reuss, A., Blacker, G., ... & Bastounis, E. E. (2022). Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. Iscience, 25(8).
Zahid, H., Alouffi, A., Almutairi, M. M., Ateeq, M., Tanaka, T., Chang, S. C., ... & Ali, A. (2023). Argas persicus and Carios vespertilionis ticks infesting ducks, domestic fowls and bats in Pakistan: first report on molecular survey and phylogenetic position of Borrelia anserina. Veterinary Sciences, 10(10), 628.
Zinck, C. B., Raveendram Thampy, P., Uhlemann, E. M. E., Adam, H., Wachter, J., Suchan, D., ... & Voordouw, M. J. (2023). Variation among strains of Borrelia burgdorferi in host tissue abundance and lifetime transmission determine the population strain structure in nature. PLoS Pathogens, 19(8), e1011572.